StyleFlow,牛逼!

人脸编辑再得一分,牛逼!

本文 GitHub https://github.com/Jack-Cherish/PythonPark 已收录,有技术干货文章,整理的学习资料,一线大厂面试经验分享等,欢迎 Star 和 完善。

一、前言

大家好,我是 Jack 。

人脸属性编辑再添力作「StyleFlow」,1月7日刚刚开源,上周末我立马就试了一下。

光照角度、人脸角度、年龄、头发、眼镜、胡须、表情等多维角度都可以单独调节:

StyleFlow,牛逼!

效果非常好,特别是光照角度的改变,很逼真。

同时人脸属性编辑的效果,与曾经写过的 ALAE 算法,又有了较大的提高。

除了人脸属性编辑,「StyleFlow」也在汽车上验证了效果汽车角度、汽车颜色都可以一键调节!

教学开始!

二、StyleFlow

高清「人脸生成」算法,你知道多少?

曾经风靡一时的 StyleGAN,给人们带来很多震撼,逼真的肖像,你根本分不清,哪张图片是算法生成的。

看一下 StyleGAN v2 人脸生成的效果:

人脸编辑再得一分,牛逼!

这些人脸,都是算法随机生成的。

有人还特意用 StyleGAN v2 做了一个酷炫的网站,随机生成百变的人脸。

你每刷新一次网页,它都会给你一张随机生成的人脸肖像。

URL:https://thispersondoesnotexist.com/

StyleFlow 就是基于 StyleGAN 的人脸属性编辑算法。

人脸编辑再得一分,牛逼!

思想就是,在隐空间(latent space)控制隐藏特征(latent code)来控制图片的属性。

简单点解释就是,一副人脸图片,是由多维特征组成的,比如年龄、性别、光照、肤色、发质等。

为了更好的对数据进行分类或生成,需要对数据的特征进行表示,但是数据有很多特征。

这些特征之间相互关联,耦合性较高,导致模型很难弄清楚它们之间的关联,使得学习效率低下,因此需要寻找到这些表面特征之下隐藏的深层次的关系,将这些关系进行解耦,得到的隐藏特征,即 latent code。

由 latent code 组成的空间就是 latent space。

StyleFlow 就做了这么一个事,解耦特征,控制特征。

算法在人脸和汽车数据集上,都取得了非常不错的效果。

三、算法测试

Github 项目地址:https://github.com/RameenAbdal/StyleFlow

第一步:搭建测试环境。

需要安装 PyQt5、Tensorflow 等第三方库,根据 requirements.txt 安装即可。

https://github.com/RameenAbdal/StyleFlow/blob/master/requirements.txt

此外,还需要配置 StyleGAN2 的环境。

项目地址:https://github.com/NVlabs/stylegan2

第二步:下载训练好的模型权重文件。

所有的权重文件都在 Google Drive。

https://drive.google.com/drive/folders/1QHc-yF5C3DChRwSdZKcx1w6K8JvSxQi7

其中,视频开头演示的使用的权重是 stylegan2-ffhq-config-f.pkl。

第三步:在工程目录,运行程序。

python main.py

打开 UI 界面。

人脸编辑再得一分,牛逼!

按上图的步骤,即可调整人脸的各种属性。

动起手来,一起体验一下吧~

四、絮叨

不知不觉,写文 5 年了

虽然每年产出不多,但是每篇都是自己的心血。

Jack 经过重重海选,终于入围了 CSDN 2020 博客之星投票环节。

投个票,大家给我个出道的机会,圆个小梦。

投票时间是1月11日-1月24日,每人每天都能投!票数累积。

当然,我也为大家准备了小礼物,CSDN有个票数榜单:

人脸编辑再得一分,牛逼!

根据1月24日榜单。

第一名,获得为期一小时的 1对1 语音交流,可以和我交流学习、算法、保研、竞赛什么都行,甚至甚至炒股心得(老粉应该都知道我的实力),内容不限。当然,如果对这些不感冒,折现 288 元也是可以的。

第二名,获得 188 元红包。

第三名,获得 Jack 亲笔签名的深度学习图书一本。

投票地址:

https://bss.csdn.net/m/topic/blog_star2020/detail?username=c406495762

每天都可以投,票数累积!

大佬太多,top3 与我无缘,但想要个 top20 的徽章,奖励自己~

感谢每一位小伙伴的支持~

我是 Jack ,我们下期见。

文章持续更新,可以微信公众号搜索【JackCui-AI】第一时间阅读,本文 GitHub https://github.com/Jack-Cherish/PythonPark 已经收录,有大厂面试完整考点,欢迎Star。

Jack-Cui CSDN认证博客专家 算法工程师
微信公众号搜索【JackCui-AI】,关注这个爱发技术干货的程序员。个人网站:https://cuijiahua.com
相关推荐
课程介绍: Style-Transfer是深度学习的酷炫应用,课程从基本原理开始讲解,逐步分析如何构造网络模型以及面临的挑战和解决思路,详解如何使用卷积神经网络构造风格转移模型并基于最流行的Tensorflow框架从零开始分模块构造网络模型。 课程目标: 快速掌握风格转换原理以及如何使用Tensorflow实现网络模型和测试效果。 适用人群: 深度学习,人工智能,机器学习爱好者 课程目录: 1 课程简介 课程介绍 2 Tensorflow安装 课程大纲 3 style-transfer基本原理 学习资料 4 风格生成网络结构原理 学员评价 5 风格生成网络细节 Style-Transfer原理与课程风格概述 6 风格转换效果展示 安装深度学习框架Tensorflow 7 风格转换参数配置 风格转换基本原理讲解 8 数据读取操作 生成网络的整体架构与原理分析 9 VGG体征提取网络结构 风格生成网络的细节深入分析 10 内容与风格特征提取 实例演示风格转换效果 11 生成网络结构定义 风格转换网络模型所涉及的参数配置 12 生成网络计算操作 实现数据源的读取操作 13 参数初始化 定义特征提取网络的模型结构 14 Content损失计算 分别提取内容与风格的特征图 15 Style损失计算 定义生成网络的模块组成 16 完成训练模块 实现生成网络的计算操作模块 17 模型保存与打印结果 生成网络模型的参数初始化操作 18 完成测试代码 Content损失计算模块分析
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页