「修炼开始」一文带你入门深度学习

在这里插入图片描述

一、前言

承诺的图解 AI 算法系列教程,今天它来了!

最近,写了很多 AI 趣味性算法教程,目前写了 14 篇,其中反响不错的教程有:

读者们玩得很开心,对 AI 算法、深度学习也来了兴趣。

但仅限于开心地跑包,这最多只能算是「调包侠」。

既然来了兴致,何不趁热打铁,多学些基础知识,争取早日迈入「调参侠」的行列。

大家一起炼丹,一起修炼。

在这里插入图片描述

图解 AI 算法系列教程,不仅仅是涉及深度学习基础知识,还会有强化学习、迁移学习等,再往小了讲就比如拆解目标检测算法,对抗神经网络(GAN)等等。

如果你喜欢这个 AI 算法系列教程,一定要让我知道,转发在看支持,更文更有动力!

难度会逐渐增加,今天咱先热热身,来点轻松的,当作这个系列的开篇。

二、深度学习

深度学习(Deep Learning)是近年来发展十分迅速的研究领域,并且在人 工智能的很多子领域都取得了巨大的成功。从根源来讲,深度学习是机器学习的一个分支。

深度学习就是从有限样例中通过算法总结出一般性的规律,并可以应用到新的未知数据上。

比如,我们可以从一些历史病例的集合中总结出症状疾病之间的规律。这样,当有新的病人时,我们可以利用总结出来的规律来判断这个病人得了什么疾病。

那想学深度学习,要掌握哪些基础知识?直接上图
在这里插入图片描述

整理了小半天的思维导图,建议收藏

深度学习主要由上图所示的几个部分组成,想学一个深度学习算法的原理,就看它是什么样的网络结构,Loss 是怎么计算的,预处理和后处理都是怎么做的。

权重初始化和学习率调整策略、优化算法、深度学习框架就那么多,并且也不是所有都要掌握,比如深度学习框架,Pytorch 玩的溜,就能应付大多数场景。

先有个整体的认知,然后再按照这个思维导图,逐个知识点学习,最后整合到一起,你会发现,你也可以自己实现各种功能的算法了

深度学习的主要目的是从数据中自动学习到有效的特征表示,它是怎么工作的?那得从神经元说起。

随着神经科学、认知科学的发展,我们逐渐知道人类的智能行为都和大脑活动有关。

人脑神经系统是一个非常复杂的组织,包含近 860 亿个神经元,这 860 亿的神经元构成了超级庞大的神经网络
在这里插入图片描述

我们知道,一个人的智力不完全由遗传决定,大部分来自于生活经验。也就是说人脑神经网络是一个具有学习能力的系统。

不同神经元之间的突触有强有弱,其强度是可以通过学习(训练)来不断改变的,具有一定的可塑性,不同的连接又形成了不同的记忆印痕。

而深度学习的神经网络,就是受人脑神经网络启发,设计的一种计算模型,它从结构、实现机理和功能上模拟人脑神经网络。

比如下图就是一个最简单的前馈神经网络,第 0 层称为输入层,最后一层称为输出层,其他中间层称为隐藏层

在这里插入图片描述

那神经网络如何工作的?网络层次结构、损失函数、优化算法、权重初始化、学习率调整都是如何运作的?

反向传播给你答案。前方,高能预警

三、反向传播

要想弄懂深度学习原理,必须搞定反向传播和链式求导法则。

先说思维导图里的网络层级结构,一个神经网络,可复杂可简单,为了方便推导,假设,你有这样一个网络层:

在这里插入图片描述

第一层是输入层,包含两个神经元 i1, i2 和截距项 b1(偏置);

第二层是隐含层,包含两个神经元 h1, h2 和截距项 b2 ;

第三层是输出层 o1 和 o2 ,每条线上标的 wi 是层与层之间连接的权重,激活函数我们默认为 sigmoid 函数。

在训练这个网络之前,需要初始化这些 wi 权重,这就是权重初始化,这里就有不少的初始化方法,我们选择最简单的,随机初始化

随机初始化的结果,如下图所示:

在这里插入图片描述

其中,输入数据: i1=0.05, i2=0.10;

输出数据(期望的输出) : o1=0.01, o2=0.99;

初始权重: w1=0.15, w2=0.20, w3=0.25, w4=0.30, w5=0.40, w6=0.45, w7=0.50, w8=0.55。

目标:给出输入数据 i1, i2(0.05 和 0.10),使输出尽可能与原始输出o1, o2(0.01 和 0.99)接近。

神经网络的工作流程分为两步:前向传播反向传播

1、正向传播

正向传播是将输入数据根据权重,计算到输出层。

1)输入层->隐藏层

计算神经元 h1 的输入加权和:

 net  h 1 = w 1 ∗ i 1 + w 2 ∗ i 2 + b 1 ∗ 1  net  h 1 = 0.15 ∗ 0.05 + 0.2 ∗ 0.1 + 0.35 ∗ 1 = 0.3775 \begin{array}{l} \text { net }_{h 1}=w_{1} * i_{1}+w_{2} * i_{2}+b_{1} * 1 \\ \text { net }_{h 1}=0.15 * 0.05+0.2 * 0.1+0.35 * 1=0.3775 \end{array}  net h1=w1i1+w2i2+b11 net h1=0.150.05+0.20.1+0.351=0.3775

神经元后面,要跟个激活层,从而引入非线性因素,这就像人的神经元一样,让细胞处于兴奋抑制的状态。

数学模拟的形式就是通过激活函数,大于阈值就激活,反之抑制。

常用的激活函如思维导图所示,这里以非常简单的 sigmoid 激活函数为例,它的函数形式如下:

在这里插入图片描述
数学公式:

f ( x ) = 1 1 + e − x f(x) = \frac{1}{1+e^{-x}} f(x)=1+ex1

使用 sigmoid 激活函数,继续计算,神经元 h1 的输出 o_h1:

 out  h 1 = 1 1 + e − n e t h 1 = 1 1 + e − 0.3775 = 0.593269992 \text { out }_{h 1}=\frac{1}{1+e^{-n e t_{h 1}}}=\frac{1}{1+e^{-0.3775}}=0.593269992  out h1=1+eneth11=1+e0.37751=0.593269992

同理,可计算出神经元 h2 的输出 o_h2:

 out  h 2 = 0.596884378 \text { out }_{h 2}=0.596884378  out h2=0.596884378

2)隐藏层->输出层

计算输出层神经元 o1 和 o2 的值:

 net  o 1 = w 5 ∗  out  h 1 + w 6 ∗  out  h 2 + b 2 ∗ 1  net  o 1 = 0.4 ∗ 0.593269992 + 0.45 ∗ 0.596884378 + 0.6 ∗ 1 = 1.105905967  out  o 1 = 1 1 + e − n e t o 1 = 1 1 + e − 1.105905967 = 0.75136507 \begin{array}{l} \text { net }_{o 1}=w_{5} * \text { out }_{h 1}+w_{6} * \text { out }_{h 2}+b_{2} * 1 \\ \text { net }_{o 1}=0.4 * 0.593269992+0.45 * 0.596884378+0.6 * 1=1.105905967 \\ \text { out }_{o 1}=\frac{1}{1+e^{-n e t_{o 1}}}=\frac{1}{1+e^{-1.105905967}}=0.75136507 \end{array}  net o1=w5 out h1+w6 out h2+b21 net o1=0.40.593269992+0.450.596884378+0.61=1.105905967 out o1=1+eneto11=1+e1.1059059671=0.75136507

这样前向传播的过程就结束了,根据输入值和权重,我们得到输出值为[0.75136079, 0.772928465],与实际值(目标)[0.01, 0.99]相差还很远,现在我们对误差进行反向传播,更新权值,重新计算输出。

2、反向传播

前向传播之后,发现输出结果与期望相差甚远,这时候就要更新权重了。

所谓深度学习的训练(炼丹),学的就是这些权重,我们期望的是调整这些权重,让输出结果符合我们的期望。

而更新权重的方式,依靠的就是反向传播。

1)计算总误差

一次前向传播过后,输出值(预测值)与目标值(标签值)有差距,那得衡量一下有多大差距。

衡量的方法,就是用思维导图中的损失函数。

损失函数也有很多,咱们还是选择一个最简单的,均方误差(MSE loss)。

均方误差的函数公式:

M S E = 1 n ∑ i = 1 n ( y ^ i − y i ) 2 M S E=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2} MSE=n1i=1n(y^iyi)2

根据公式,直接计算预测值与标签值的总误差:

E total = ∑ 1 2 ( target − output ) 2 E_{\text {total}}=\sum \frac{1}{2}(\text {target}-\text {output})^{2} Etotal=21(targetoutput)2

有两个输出,所以分别计算 o1 和 o2 的误差,总误差为两者之和:

E o 1 = 1 2 ( target o 1 − out o 1 ) 2 = 1 2 ( 0.01 − 0.75136507 ) 2 = 0.274811083 E o 2 = 0.023560026 E total = E o 1 + E o 2 = 0.274811083 + 0.023560026 = 0.298371109 \begin{array}{l} E_{o 1}=\frac{1}{2}\left(\text {target}_{o 1}-\text {out}_{o 1}\right)^{2}=\frac{1}{2}(0.01-0.75136507)^{2}=0.274811083 \\ E_{o 2}=0.023560026 \\ E_{\text {total}}=E_{o 1}+E_{o 2}=0.274811083+0.023560026=0.298371109 \end{array} Eo1=21(targeto1outo1)2=21(0.010.75136507)2=0.274811083Eo2=0.023560026Etotal=Eo1+Eo2=0.274811083+0.023560026=0.298371109

2)隐含层->输出层的权值更新

以权重参数 w5 为例,如果我们想知道 w5 对整体误差产生了多少影响,可以用整体误差对 w5 求偏导求出。

这是链式法则,它是微积分中复合函数的求导法则,就是这个:

在这里插入图片描述

根据链式法则易得:

∂ E total ∂ w 5 = ∂ E total ∂ out o 1 ∗ ∂ out o 1 ∂ net o 1 ∗ ∂ net o 1 ∂ w 5 \frac{\partial E_{\text {total}}}{\partial w_{5}}=\frac{\partial E_{\text {total}}}{\partial \text {out}_{o 1}} * \frac{\partial \text {out}_{o 1}}{\partial \text {net}_{o 1}} * \frac{\partial \text {net}_{o 1}}{\partial w_{5}} w5Etotal=outo1Etotalneto1outo1w5neto1

下面的图可以更直观的看清楚误差是怎样反向传播的:

在这里插入图片描述

现在我们来分别计算每个式子的值:

计算 ∂ E total ∂ out o 1 \frac{\partial E_{\text {total}}}{\partial \text {out}_{o 1}} outo1Etotal

E total = 1 2 ( target ⁡ o 1 − out o 1 ) 2 + 1 2 ( target ⁡ o 2 − out o 2 ) 2 ∂ E total ∂ o u t 01 = 2 ∗ 1 2 ( target o 1 − out o 1 ) 2 − 1 ∗ − 1 + 0 ∂ E total ∂ out o 1 = − ( target o 1 − out o 1 ) = − ( 0.01 − 0.75136507 ) = 0.74136507 \begin{array}{l} E_{\text {total}}=\frac{1}{2}\left(\operatorname{target}_{o 1}-\text {out}_{o 1}\right)^{2}+\frac{1}{2}\left(\operatorname{target}_{o 2}-\text {out}_{o 2}\right)^{2} \\ \frac{\partial E_{\text {total}}}{\partial o u t_{01}}=2 * \frac{1}{2}\left(\text {target}_{o 1}-\text {out}_{o 1}\right)^{2-1} *-1+0 \\ \frac{\partial E_{\text {total}}}{\partial \text {out}_{o 1}}=-\left(\text {target}_{o 1}-\text {out}_{o 1}\right)=-(0.01-0.75136507)=0.74136507 \end{array} Etotal=21(targeto1outo1)2+21(targeto2outo2)2out01Etotal=221(targeto1outo1)211+0outo1Etotal=(targeto1outo1)=(0.010.75136507)=0.74136507

计算 ∂ o u t o 1 ∂ n e t o 1 \frac{\partial o u t_{o 1}}{\partial n e t_{o 1}} neto1outo1:

out o 1 = 1 1 + e − n e t o 1 ∂ o u t o 1 ∂ n e t o 1 = o u t o 1 ( 1 − o u t o 1 ) = 0.75136507 ( 1 − 0.75136507 ) = 0.186815602 \begin{array}{l} \text {out}_{o 1}=\frac{1}{1+e^{-n e t_{o 1}}} \\ \frac{\partial o u t_{o 1}}{\partial n e t_{o 1}}=o u t_{o 1}\left(1-o u t_{o 1}\right)=0.75136507(1-0.75136507)=0.186815602 \end{array} outo1=1+eneto11neto1outo1=outo1(1outo1)=0.75136507(10.75136507)=0.186815602

这一步实际上就是对sigmoid函数求导,比较简单,可以自己推导一下。

计算 ∂ n e t o 1 ∂ w 5 \frac{\partial n e t_{o 1}}{\partial w_{5}} w5neto1

 net  o 1 = w 5 ∗  out  h 1 + w 6 ∗  out  h 2 + b 2 ∗ 1 ∂ n e t o 1 ∂ w 5 = 1 ∗  out  h 1 ∗ w 5 ( 1 − 1 ) + 0 + 0 =  out  h 1 = 0.593269992 \begin{array}{l} \text { net }_{o 1}=w_{5} * \text { out }_{h 1}+w_{6} * \text { out }_{h 2}+b_{2} * 1 \\ \frac{\partial n e t_{o 1}}{\partial w_{5}}=1 * \text { out }_{h 1} * w_{5}^{(1-1)}+0+0=\text { out }_{h 1}=0.593269992 \end{array}  net o1=w5 out h1+w6 out h2+b21w5neto1=1 out h1w5(11)+0+0= out h1=0.593269992

最后三者相乘:

∂ E total ∂ w 5 = ∂ E total ∂ o u t o 1 ∗ ∂ out o 1 ∂ n e t o 1 ∗ ∂ n e t o 1 ∂ w 5 \frac{\partial E_{\text {total}}}{\partial w_{5}}=\frac{\partial E_{\text {total}}}{\partial o u t_{o 1}} * \frac{\partial \text {out}_{o 1}}{\partial n e t_{o 1}} * \frac{\partial n e t_{o 1}}{\partial w_{5}} w5Etotal=outo1Etotalneto1outo1w5neto1

∂ E t t a l ∂ w 5 = 0.74136507 ∗ 0.186815602 ∗ 0.593269992 = 0.082167041 \frac{\partial E_{t t a l}}{\partial w_{5}}=0.74136507 * 0.186815602 * 0.593269992=0.082167041 w5Ettal=0.741365070.1868156020.593269992=0.082167041

这样我们就计算出整体误差E(total)对 w5 的偏导值。

回过头来再看看上面的公式,我们发现:

∂ E t o t a l ∂ w 5 = − ( target ⁡ o 1 − o u t o 1 ) ∗  out  o 1 ( 1 −  out  o 1 ) ∗  out  h 1 \frac{\partial E_{t o t a l}}{\partial w_{5}}=-\left(\operatorname{target}_{o 1}-o u t_{o 1}\right) * \text { out }_{o 1}\left(1-\text { out }_{o 1}\right) * \text { out }_{h 1} w5Etotal=(targeto1outo1) out o1(1 out o1) out h1

为了表达方便,用 δ o 1 \delta_{o 1} δo1来表示输出层的误差:

δ o 1 = ∂ E t o t a l ∂ o u t o 1 ∗ ∂ o u t o 1 ∂ n e t o 1 = ∂ E t o t a l ∂ n e t o 1 δ o 1 = − ( target ⁡ o 1 − o u t o 1 ) ∗  out  o 1 ( 1 − o u t o 1 ) \begin{array}{l} \delta_{o 1}=\frac{\partial E_{t o t a l}}{\partial o u t_{o 1}} * \frac{\partial o u t_{o 1}}{\partial n e t_{o 1}}=\frac{\partial E_{t o t a l}}{\partial n e t_{o 1}} \\ \delta_{o 1}=-\left(\operatorname{target}_{o 1}-o u t_{o 1}\right) * \text { out }_{o 1}\left(1-o u t_{o 1}\right) \end{array} δo1=outo1Etotalneto1outo1=neto1Etotalδo1=(targeto1outo1) out o1(1outo1)

因此,整体误差E(total)对w5的偏导公式可以写成:

∂ E total ∂ w 5 = δ o 1  out  h 1 \frac{\partial E_{\text {total}}}{\partial w_{5}}=\delta_{o 1} \text { out }_{h 1} w5Etotal=δo1 out h1

如果输出层误差计为负的话,也可以写成:

∂ E t o t a l ∂ w 5 = − δ o 1  out  h 1 \frac{\partial E_{t o t a l}}{\partial w_{5}}=-\delta_{o 1} \text { out }_{h 1} w5Etotal=δo1 out h1

最后我们来更新 w5 的值:
输入层
w 5 + = w 5 − η ∗ ∂ E t o t a l ∂ w 5 = 0.4 − 0.5 ∗ 0.082167041 = 0.35891648 w_{5}^{+}=w_{5}-\eta * \frac{\partial E_{t o t a l}}{\partial w_{5}}=0.4-0.5 * 0.082167041=0.35891648 w5+=w5ηw5Etotal=0.40.50.082167041=0.35891648

这个更新权重的策略,就是思维导图中的优化算法 η \eta η 是学习率,我们这里取0.5。

如果学习率要根据迭代的次数调整,那就用到了思维导图中的学习率调整

同理,可更新w6,w7,w8:

w 6 + = 0.408666186 w 7 + = 0.511301270 w 8 + = 0.561370121 \begin{array}{l} w_{6}^{+}=0.408666186 \\ w_{7}^{+}=0.511301270 \\ w_{8}^{+}=0.561370121 \end{array} w6+=0.408666186w7+=0.511301270w8+=0.561370121

3)隐含层->隐含层的权值更新

方法其实与上面说的差不多,但是有个地方需要变一下,在上文计算总误差对 w5 的偏导时,是从out(o1)->net(o1)->w5,但是在隐含层之间的权值更新时,是out(h1)->net(h1)->w1,而 out(h1) 会接受 E(o1) 和 E(o2) 两个地方传来的误差,所以这个地方两个都要计算。

在这里插入图片描述

计算 ∂ E total ∂ out h 1 \frac{\partial E_{\text {total}}}{\partial \text {out}_{h 1}} outh1Etotal

∂ E total ∂ o u t h 1 = ∂ E o 1 ∂ o u t h 1 + ∂ E o 2 ∂ o u t h 1 \frac{\partial E_{\text {total}}}{\partial o u t_{h 1}}=\frac{\partial E_{o 1}}{\partial o u t_{h 1}}+\frac{\partial E_{o 2}}{\partial o u t_{h 1}} outh1Etotal=outh1Eo1+outh1Eo2

先计算 ∂ E o 1 ∂ o u t h 1 \frac{\partial E_{o 1}}{\partial o u t_{h 1}} outh1Eo1:

∂ E o 1 ∂ o u t h 1 = ∂ E o 1 ∂ n e t o 1 ∗ ∂ n e t o 1 ∂ o u t h 1 ∂ E o 1 ∂ n e t o 1 = ∂ E o 1 ∂ o u t o 1 ∗ ∂ o u t o 1 ∂ n e t o 1 = 0.74136507 ∗ 0.186815602 = 0.138498562  net  o 1 = w 5 ∗  out  h 1 + w 6 ∗  out  h 2 + b 2 ∗ 1 ∂ n e t o 1 ∂ o u t h 1 = w 5 = 0.40 ∂ E o 1 ∂ o u t h 1 = ∂ E o 1 ∂ n e t o 1 ∗ ∂ n e t o 1 ∂ o u t h 1 = 0.138498562 ∗ 0.40 = 0.055399425 \begin{array}{l} \frac{\partial E_{o 1}}{\partial o u t_{h 1}}=\frac{\partial E_{o 1}}{\partial n e t_{o 1}} * \frac{\partial n e t_{o 1}}{\partial o u t_{h 1}} \\ \frac{\partial E_{o 1}}{\partial n e t_{o 1}}=\frac{\partial E_{o 1}}{\partial o u t_{o 1}} * \frac{\partial o u t_{o 1}}{\partial n e t_{o 1}}=0.74136507 * 0.186815602=0.138498562 \\ \text { net }_{o 1}=w_{5} * \text { out }_{h 1}+w_{6} * \text { out }_{h 2}+b_{2} * 1 \\ \frac{\partial n e t_{o 1}}{\partial o u t_{h 1}}=w_{5}=0.40 \\ \frac{\partial E_{o 1}}{\partial o u t_{h 1}}=\frac{\partial E_{o 1}}{\partial n e t_{o 1}} * \frac{\partial n e t_{o 1}}{\partial o u t_{h 1}}=0.138498562 * 0.40=0.055399425 \end{array} outh1Eo1=neto1Eo1outh1neto1neto1Eo1=outo1Eo1neto1outo1=0.741365070.186815602=0.138498562 net o1=w5 out h1+w6 out h2+b21outh1neto1=w5=0.40outh1Eo1=neto1Eo1outh1neto1=0.1384985620.40=0.055399425

同理,计算出:

∂ E o 2 ∂ o u t h 1 = − 0.019049119 \frac{\partial E_{o 2}}{\partial o u t_{h 1}}=-0.019049119 outh1Eo2=0.019049119

两者相加得到总值:

∂ E total ∂ o u t h 1 = ∂ E o 1 ∂ o u t h 1 + ∂ E o 2 ∂ o u t h 1 = 0.055399425 + − 0.019049119 = 0.036350306 \frac{\partial E_{\text {total}}}{\partial o u t_{h 1}}=\frac{\partial E_{o 1}}{\partial o u t_{h 1}}+\frac{\partial E_{o 2}}{\partial o u t_{h 1}}=0.055399425+-0.019049119=0.036350306 outh1Etotal=outh1Eo1+outh1Eo2=0.055399425+0.019049119=0.036350306

再计算 ∂ o u t h 1 ∂ n e t h 1 \frac{\partial o u t_{h 1}}{\partial n e t_{h 1}} neth1outh1:

 out  h 1 = 1 1 + e − n e t t h 1  out  h 1 ∂  net  h 1 =  out  h 1 ( 1 −  out  h 1 ) = 0.59326999 ( 1 − 0.59326999 ) = 0.241300709 \begin{array}{l} \text { out }_{h 1}=\frac{1}{1+e^{-n e t} t_{h 1}} \\ \frac{\text { out }_{h 1}}{\partial \text { net }_{h 1}}=\text { out }_{h 1}\left(1-\text { out }_{h 1}\right)=0.59326999(1-0.59326999)=0.241300709 \end{array}  out h1=1+enetth11 net h1 out h1= out h1(1 out h1)=0.59326999(10.59326999)=0.241300709

再计算 ∂ n e t h 1 ∂ w 1 \frac{\partial n e t_{h 1}}{\partial w_{1}} w1neth1:

net h 1 = w 1 ∗ i 1 + w 2 ∗ i 2 + b 1 ∗ 1 ∂ net h 1 ∂ w 1 = i 1 = 0.05 \begin{array}{l} \text {net}_{h 1}=w_{1} * i_{1}+w_{2} * i_{2}+b_{1} * 1 \\ \frac{\partial \text {net}_{h 1}}{\partial w_{1}}=i_{1}=0.05 \end{array} neth1=w1i1+w2i2+b11w1neth1=i1=0.05

最后,三者相乘:

∂ E t o t a l ∂ w 1 = ∂ E t o t a l ∂ o u t h 1 ∗ ∂ o u t h 1 ∂ n e t h 1 ∗ ∂ n e t h 1 ∂ w 1 ∂ E t o t a l ∂ w 1 = 0.036350306 ∗ 0.241300709 ∗ 0.05 = 0.000438568 \begin{array}{l} \frac{\partial E_{t o t a l}}{\partial w_{1}}=\frac{\partial E_{t o t a l}}{\partial o u t_{h 1}} * \frac{\partial o u t_{h} 1}{\partial n e t_{h 1}} * \frac{\partial n e t_{h 1}}{\partial w_{1}} \\ \frac{\partial E_{t o t a l}}{\partial w_{1}}=0.036350306 * 0.241300709 * 0.05=0.000438568 \end{array} w1Etotal=outh1Etotalneth1outh1w1neth1w1Etotal=0.0363503060.2413007090.05=0.000438568

为了简化公式,用 sigma(h1) 表示隐含层单元 h1 的误差:

∂ E t o t a l ∂ w 1 = ( ∑ o ∂ E t o t a l ∂ o u t o ∗ ∂ o u t o ∂ n e t o ∗ ∂ n e t o ∂ o u t h 1 ) ∗ ∂ o u t h 1 ∂ n e t h 1 ∗ ∂ n e t h 1 ∂ w 1 ∂ E t o t a l ∂ w 1 = ( ∑ o δ o ∗ w h o ) ∗ out h 1 ( 1 − o u t h 1 ) ∗ i 1 ∂ E t o t a l ∂ w 1 = δ h 1 i 1 \begin{aligned} \frac{\partial E_{t o t a l}}{\partial w_{1}} &=\left(\sum_{o} \frac{\partial E_{t o t a l}}{\partial o u t_{o}} * \frac{\partial o u t_{o}}{\partial n e t_{o}} * \frac{\partial n e t_{o}}{\partial o u t_{h 1}}\right) * \frac{\partial o u t_{h} 1}{\partial n e t_{h 1}} * \frac{\partial n e t_{h 1}}{\partial w_{1}} \\ \frac{\partial E_{t o t a l}}{\partial w_{1}} &=\left(\sum_{o} \delta_{o} * w_{h o}\right) * \text {out}_{h 1}\left(1-o u t_{h 1}\right) * i_{1} \\ \frac{\partial E_{t o t a l}}{\partial w_{1}} &=\delta_{h 1} i_{1} \end{aligned} w1Etotalw1Etotalw1Etotal=(ooutoEtotalnetooutoouth1neto)neth1outh1w1neth1=(oδowho)outh1(1outh1)i1=δh1i1

最后,更新 w1 的权值:

w 1 + = w 1 − η ∗ ∂ E t o t a l ∂ w 1 = 0.15 − 0.5 ∗ 0.000438568 = 0.149780716 w_{1}^{+}=w_{1}-\eta * \frac{\partial E_{t o t a l}}{\partial w_{1}}=0.15-0.5 * 0.000438568=0.149780716 w1+=w1ηw1Etotal=0.150.50.000438568=0.149780716

同理,额可更新w2,w3,w4的权值:

w 2 + = 0.19956143 w 3 + = 0.24975114 w 4 + = 0.29950229 \begin{array}{l} w_{2}^{+}=0.19956143 \\ w_{3}^{+}=0.24975114 \\ w_{4}^{+}=0.29950229 \end{array} w2+=0.19956143w3+=0.24975114w4+=0.29950229

这样误差反向传播法就完成了,最后我们再把更新的权值重新计算,不停地迭代。

在这个例子中第一次迭代之后,总误差E(total)由0.298371109下降至0.291027924。

迭代10000次后,总误差为0.000035085,输出为[0.015912196,0.984065734](原输入为[0.01,0.99]),证明效果还是不错的。

这就是整个神经网络的工作原理,如果你跟着思路,顺利看到这里。那么恭喜你,深度学习的学习算是通过了一关。

四、Python 实现

整个过程,可以用 Python 代码实现。

#coding:utf-8
import random
import math

#
#   参数解释:
#   "pd_" :偏导的前缀
#   "d_" :导数的前缀
#   "w_ho" :隐含层到输出层的权重系数索引
#   "w_ih" :输入层到隐含层的权重系数的索引

class NeuralNetwork:
    LEARNING_RATE = 0.5

    def __init__(self, num_inputs, num_hidden, num_outputs, hidden_layer_weights = None, hidden_layer_bias = None, output_layer_weights = None, output_layer_bias = None):
        self.num_inputs = num_inputs

        self.hidden_layer = NeuronLayer(num_hidden, hidden_layer_bias)
        self.output_layer = NeuronLayer(num_outputs, output_layer_bias)
        self.init_weights_from_inputs_to_hidden_layer_neurons(hidden_layer_weights)
        self.init_weights_from_hidden_layer_neurons_to_output_layer_neurons(output_layer_weights)

    def init_weights_from_inputs_to_hidden_layer_neurons(self, hidden_layer_weights):
        weight_num = 0
        for h in range(len(self.hidden_layer.neurons)):
            for i in range(self.num_inputs):
                if not hidden_layer_weights:
                    self.hidden_layer.neurons[h].weights.append(random.random())
                else:
                    self.hidden_layer.neurons[h].weights.append(hidden_layer_weights[weight_num])
                weight_num += 1

    def init_weights_from_hidden_layer_neurons_to_output_layer_neurons(self, output_layer_weights):
        weight_num = 0
        for o in range(len(self.output_layer.neurons)):
            for h in range(len(self.hidden_layer.neurons)):
                if not output_layer_weights:
                    self.output_layer.neurons[o].weights.append(random.random())
                else:
                    self.output_layer.neurons[o].weights.append(output_layer_weights[weight_num])
                weight_num += 1

    def inspect(self):
        print('------')
        print('* Inputs: {}'.format(self.num_inputs))
        print('------')
        print('Hidden Layer')
        self.hidden_layer.inspect()
        print('------')
        print('* Output Layer')
        self.output_layer.inspect()
        print('------')

    def feed_forward(self, inputs):
        hidden_layer_outputs = self.hidden_layer.feed_forward(inputs)
        return self.output_layer.feed_forward(hidden_layer_outputs)

    def train(self, training_inputs, training_outputs):
        self.feed_forward(training_inputs)

        # 1. 输出神经元的值
        pd_errors_wrt_output_neuron_total_net_input = [0] * len(self.output_layer.neurons)
        for o in range(len(self.output_layer.neurons)):

            # ∂E/∂zⱼ
            pd_errors_wrt_output_neuron_total_net_input[o] = self.output_layer.neurons[o].calculate_pd_error_wrt_total_net_input(training_outputs[o])

        # 2. 隐含层神经元的值
        pd_errors_wrt_hidden_neuron_total_net_input = [0] * len(self.hidden_layer.neurons)
        for h in range(len(self.hidden_layer.neurons)):

            # dE/dyⱼ = Σ ∂E/∂zⱼ * ∂z/∂yⱼ = Σ ∂E/∂zⱼ * wᵢⱼ
            d_error_wrt_hidden_neuron_output = 0
            for o in range(len(self.output_layer.neurons)):
                d_error_wrt_hidden_neuron_output += pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].weights[h]

            # ∂E/∂zⱼ = dE/dyⱼ * ∂zⱼ/∂
            pd_errors_wrt_hidden_neuron_total_net_input[h] = d_error_wrt_hidden_neuron_output * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_input()

        # 3. 更新输出层权重系数
        for o in range(len(self.output_layer.neurons)):
            for w_ho in range(len(self.output_layer.neurons[o].weights)):

                # ∂Eⱼ/∂wᵢⱼ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢⱼ
                pd_error_wrt_weight = pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].calculate_pd_total_net_input_wrt_weight(w_ho)

                # Δw = α * ∂Eⱼ/∂wᵢ
                self.output_layer.neurons[o].weights[w_ho] -= self.LEARNING_RATE * pd_error_wrt_weight

        # 4. 更新隐含层的权重系数
        for h in range(len(self.hidden_layer.neurons)):
            for w_ih in range(len(self.hidden_layer.neurons[h].weights)):

                # ∂Eⱼ/∂wᵢ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢ
                pd_error_wrt_weight = pd_errors_wrt_hidden_neuron_total_net_input[h] * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_weight(w_ih)

                # Δw = α * ∂Eⱼ/∂wᵢ
                self.hidden_layer.neurons[h].weights[w_ih] -= self.LEARNING_RATE * pd_error_wrt_weight

    def calculate_total_error(self, training_sets):
        total_error = 0
        for t in range(len(training_sets)):
            training_inputs, training_outputs = training_sets[t]
            self.feed_forward(training_inputs)
            for o in range(len(training_outputs)):
                total_error += self.output_layer.neurons[o].calculate_error(training_outputs[o])
        return total_error

class NeuronLayer:
    def __init__(self, num_neurons, bias):

        # 同一层的神经元共享一个截距项b
        self.bias = bias if bias else random.random()

        self.neurons = []
        for i in range(num_neurons):
            self.neurons.append(Neuron(self.bias))

    def inspect(self):
        print('Neurons:', len(self.neurons))
        for n in range(len(self.neurons)):
            print(' Neuron', n)
            for w in range(len(self.neurons[n].weights)):
                print('  Weight:', self.neurons[n].weights[w])
            print('  Bias:', self.bias)

    def feed_forward(self, inputs):
        outputs = []
        for neuron in self.neurons:
            outputs.append(neuron.calculate_output(inputs))
        return outputs

    def get_outputs(self):
        outputs = []
        for neuron in self.neurons:
            outputs.append(neuron.output)
        return outputs

class Neuron:
    def __init__(self, bias):
        self.bias = bias
        self.weights = []

    def calculate_output(self, inputs):
        self.inputs = inputs
        self.output = self.squash(self.calculate_total_net_input())
        return self.output

    def calculate_total_net_input(self):
        total = 0
        for i in range(len(self.inputs)):
            total += self.inputs[i] * self.weights[i]
        return total + self.bias

    # 激活函数sigmoid
    def squash(self, total_net_input):
        return 1 / (1 + math.exp(-total_net_input))

    def calculate_pd_error_wrt_total_net_input(self, target_output):
        return self.calculate_pd_error_wrt_output(target_output) * self.calculate_pd_total_net_input_wrt_input();

    # 每一个神经元的误差是由平方差公式计算的
    def calculate_error(self, target_output):
        return 0.5 * (target_output - self.output) ** 2

    def calculate_pd_error_wrt_output(self, target_output):
        return -(target_output - self.output)

    def calculate_pd_total_net_input_wrt_input(self):
        return self.output * (1 - self.output)

    def calculate_pd_total_net_input_wrt_weight(self, index):
        return self.inputs[index]


# 文中的例子:

nn = NeuralNetwork(2, 2, 2, hidden_layer_weights=[0.15, 0.2, 0.25, 0.3], hidden_layer_bias=0.35, output_layer_weights=[0.4, 0.45, 0.5, 0.55], output_layer_bias=0.6)
for i in range(10000):
    nn.train([0.05, 0.1], [0.01, 0.09])
    print(i, round(nn.calculate_total_error([[[0.05, 0.1], [0.01, 0.09]]]), 9))


#另外一个例子,可以把上面的例子注释掉再运行一下:

# training_sets = [
#     [[0, 0], [0]],
#     [[0, 1], [1]],
#     [[1, 0], [1]],
#     [[1, 1], [0]]
# ]

# nn = NeuralNetwork(len(training_sets[0][0]), 5, len(training_sets[0][1]))
# for i in range(10000):
#     training_inputs, training_outputs = random.choice(training_sets)
#     nn.train(training_inputs, training_outputs)
#     print(i, nn.calculate_total_error(training_sets))

五、其他

预处理和后处理就相对简单很多,预处理就是一些常规的图像变换操作,数据增强方法等。后处理每个任务都略有不同,比如目标检测的非极大值抑制等,这些内容可以放在以后再讲。

至于深度学习框架的学习,那就是另外一大块内容了,深度学习框架是一种为了深度学习开发而生的工具,库和预训练模型等资源的总和。我们可以用 Python 实现简单的神经网络,但是复杂的神经网络,还得靠框架,框架的使用可以大幅度降低我们的开发成本。

至于学哪种框架,看个人喜好,Pytorch 和 Tensorflow 都行。人生苦短,我选 Pytorch。

六、学习资料推荐

学完本文,只能算是深度学习入门,还有非常多的内容需要深入学习。

推荐一些资料,方便感兴趣的读者继续研究。

视频:

书籍:

  • 《神经网络与深度学习》
  • 《PyTorch深度学习实战》

开源项目:

  • Pytorch教程 1:https://github.com/yunjey/pytorch-tutorial
  • Pytorch教程 2:https://github.com/pytorch/tutorials

视频和书籍,公众号「JackCui-AI」后台回复「666」有惊喜哦!

七、絮叨

学习的积累是个漫长而又孤独的过程,厚积才能薄发,有不懂的知识就多看多想,要相信最后胜利的,是坚持下去的那个人。

本文硬核,如果喜欢,还望转发、再看多多支持。

我是 Jack,我们下期见。

原文链接:https://mp.weixin.qq.com/s/ABvmPbFU9XfkOWj42Tv9jQ
文章持续更新,可以微信公众号搜索【JackCui-AI】第一时间阅读,本文 GitHub https://github.com/Jack-Cherish/PythonPark 已经收录,有大厂面试完整考点,欢迎Star。

Jack-Cui CSDN认证博客专家 算法工程师
微信公众号搜索【JackCui-AI】,关注这个爱发技术干货的程序员。个人网站:https://cuijiahua.com
相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页